
Contents lists available at ScienceDirect

Dynamics of Atmospheres and Oceans

journal homepage: www.elsevier.com/locate/dynatmoce

Evaluation of regional climate models performance in simulating
rainfall climatology of Jemma sub-basin, Upper Blue Nile Basin,
Ethiopia

Gebrekidan Workua,⁎, Ermias Teferia, Amare Bantiderb,c, Yihun T. Diled,
Meron Teferi Tayec

a Center for Environment and Development Studies, Addis Ababa University, Ethiopia
b Center for Food Security Studies, Addis Ababa University, Ethiopia
cWater and Land Resources Centre, Addis Ababa University, Ethiopia
d College of Agriculture and Life Sciences, Texas A&M University, TX, USA

A R T I C L E I N F O

Keywords:
Regional Climate Models
Downscaling
RCM evaluation
Rainfall
Upper Blue Nile

A B S T R A C T

This study examines the performance of 10 Regional Climate Model (RCM) outputs which are
dynamically downscaled from the fifth phase of Coupled Model Inter-comparison Project
(CMIP5) GCMs using different RCMs parameterization approaches. The RCMs are evaluated
based on their ability to reproduce the magnitude and pattern of monthly and annual rainfall,
characteristics of rainfall events and variability related to Sea Surface Temperature (SST) for the
period 1981–2005. The outputs of all RCMs showed wet bias, particularly in the higher elevation
areas of the sub-basin. Wet bias of annual rainfall ranges from 9.60% in CCLM4 (HadGEM2-ES)
model to 110.9% in RCA4 (EC-EARTH) model. JJAS (June-September) rainfall is also char-
acterized by wet bias ranges from 0.76% in REMO (MPI-ESM-LR) model to 100.7% in RCA4
(HadGEM2-ES) model. GCMs that were dynamically downscaled through REMO (Max Planck
Institute) and CCLM4 (Climate Limited-Area Modeling) performed better in capturing the rainfall
climatology and distribution of rainfall events. However, GCMs dynamically downscaled using
RCA4 (SMHI Rossby Center Regional Atmospheric Model) were characterized by overestimation
and there are more extreme rainfall events in the cumulative distribution. Most of the RCMs’
rainfall over the sub-basin showed a teleconnection with Sea Surface Temperature (SST) of
CMIP5 GCMs in the Pacific and Indian Oceans, but weak. The ensemble mean of all 10 RCMs
simulations was superior in capturing the seasonal pattern of the rainfall and had better corre-
lation with observed annual (Correl = 0.6) and JJAS season rainfall (Correl = 0.5) than any
single model (S-RCM). We recommend using GCMs downscaled using REMO and CCLM4 RCMs
and stations based statistical bias correction to manage elevation based biases of RCMs in the
Upper Blue Nile Basin, specifically in the Jemma sub-basin.

1. Introduction

Global Climate Models (GCMs) are instrumental to assess relative change in the climate system due to various radiative forcing
and make climate predictions on seasonal to decadal time scales and projections of future climate (IPCC, 2013). Many GCMs were
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developed by different climate research centers since the 1950 s (Edwards, 2010). The establishment of the Earth System Modeling
Framework (ESMF) which couples atmosphere–ocean GCMs with the land surface, the cryosphere, hydrology and vegetation pro-
cesses is another framework in climate modeling (Hill et al., 2009). Despite improvements in the GCMs, challenges remain on their
spatial resolution and parameterization. GCMs’ rainfall simulation at the national and regional scales remains difficult (Randall et al.,
2007; Flato et al., 2013). Moreover, GCMs that have coarse spatial resolutions could not realistically capture climatic extreme events.
Particularly, in regions where there is an uneven topography, downscaling climate models at regional spatial scale is vital to get
accurate information for local climate impact studies (Flato et al., 2013).

Regional Climate Models (RCMs) are developed with higher spatial resolution to describe climate variability at regional scale.
RCMs add value compared to GCMs in simulating climate of coastal and mountainous regions and in mesoscale (i.e. a spatial scale of
1–100 km) (Giorgi et al., 2009; Feser et al., 2011). There are different initiatives to produce large ensembles of RCM simulations that
can be further used for climate change impact assessment at regional spatial scales. CORDEX (Coordinated Regional Climate
Downscaling Experiment) under the auspices of the World Climate Research Program (WCRP) is an initiative to downscale different
GCM outputs that participated in the Coupled Model Inter-comparison Project Phase 5 (CMIP5) and to generate an ensemble of high-
resolution historical and future climate projections for the African continent (Giorgi et al., 2009; Taylor et al., 2012). CORDEX
simulations add value over GCMs in Africa, particularly in representing the annual cycle of rainfall and extreme rainfall events in
different regions of the continent (Nikulin et al., 2012; Dosio et al., 2015; Kim et al., 2014). However, uncertainty persists in RCMs’
simulation of rainfall, temperature, wind and other processes (Varis et al., 2004). Distinguishing the cause of uncertainty is difficult
since it may come from either the initial boundary conditions (GCM) or RCMs parameterization. The other problem of RCMs is their
inconsistency of performance across regions and seasons (Gleckler et al., 2008; Feser et al., 2011; Endris et al., 2013) which warrants
caution in choosing RCMs to study a particular region and/or seasons.

Different studies evaluated the performance of climate models representing the climate of the Upper Blue Nile Basin using various
techniques (e.g. Bhattacharjee and Zaitchi, 2015; Jury, 2015; Haile and Rientjes, 2015). Most of these studies compared observed and
model outputs and evaluated the ability of climate models in capturing inter-annual variability associated with natural climate
processes such as El Niño-Southern Oscillation (ENSO) (Bhattacharjee and Zaitchi, 2015; Jury, 2015; Haile and Rientjes, 2015). Little
consistency was found in the performance of model outputs in simulating amount and seasonality of rainfall, and teleconnections
across the Nile River headwaters region (Bhattacharjee and Zaitchi, 2015). The difference in the performance of climate models in
capturing annual cycle and inter-annual variability of rainfall and maximum temperature was also studied in the Blue Nile region of
Ethiopia (Jury, 2015).

Uncertainty in climate model outputs for climate change impact assessment can be reduced using multiple lateral boundary
conditions (GCMs), multiple RCM outputs, and robust downscaling methods (Feser et al., 2011; Flato et al., 2013; USAID, 2014).
However, only limited studies consider diversity of methods and climate model outputs to show the range of uncertainty. For
example, in the Upper Blue Nile Basin, only a couple of studies used multiple GCM outputs and multiple RCM simulations (Haile and
Rientjes, 2015; Endris et al., 2013; Bhattacharjee and Zaitchi, 2015; Nikulin et al., 2012). In fact, most of these studies used limited
RCMs downscaled using few numbers of initial boundary condition (GCMs). For example, Dosio et al (2015) has analyzed the added
value of four GCMs downscaled by single RCM (COnsortium for Small-scale MOdeling, COSMO-CCLM). Haile and Rientjes (2015)
evaluated the performance of eight GCMs downscaled using single RCM (RCA4) in the Blue Nile Basin. While other studies used
reanalysis datasets than observational data sets to evaluate RCMs (Endris et al., 2013; Bhattacharjee and Zaitchi, 2015) which are
characterized by biases in estimating rainfall (Nikulin et al., 2012).

The objective of this study is to evaluate the performance of multiple RCMs driven by multiple GCMs in capturing the mean
annual and monthly rainfall, distribution of rainfall events and large-scale climate circulation patterns (teleconnections) in the
Jemma sub-basin, Upper Blue Nile Basin for the period 1981–2005. Observed data collected from the Ethiopian National
Meteorological Agency (NMA) was used for evaluation. The RCMs which capture rainfall climatology of the Jemma sub-basin will be
used for further statistical bias correction, hydrological modeling, and other climate change mitigation and adaptation measures in
the sub-basin.

2. Materials and methods

2.1. Description of the study area

This study was conducted in the Jemma sub-basin, which is one of the sub-basins of the Upper Blue Nile Basin. It is located in the
Central Highland of Ethiopia (Fig. 1), whose climate is highly influenced by moisture coming from the Indian Ocean, Equatorial east
Pacific, Gulf of Guinea, Mediterranean region and Arabian Peninsula (Seleshi and Zanke, 2004; Viste and Sorteberg, 2011). The sub-
basin has a catchment area of ∼15,000 km2, which accounts ∼8% of the area and ∼14% of the flow of the Upper Blue Nile Basin
(Yilma and Awulachew, 2009). Jemma sub-basin is highly prone to soil erosion; the long-term average annual sediment yield at the
sub-basin outlet is 21.2 million tons (Ali et al., 2014). The elevation in the sub-basin ranges from 1040m to 3814m above sea level.

Jemma sub-basin receives annual rainfall ranges between 697mm to 1475mm. The sub-basin has two rainfall seasons. JJAS (i.e.
June- September) locally called Kiremtis the main rainfall season followed by spring season (March-May) (MAM)) locally called Belg.
Mean annual temperature in the sub-basin ranges from 9 °C to 24 °C. The agro-ecologies in the sub-basin range from cold, moist sub-
Afro alpine to warm sub-moist lowlands (MoA, 2000).
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2.2. Data and methods

2.2.1. Observed data
Daily observed rainfall data for the period 1981–2005 was used for regional climate models evaluation. The observed data for

nine climatic stations located within the Jemma sub-basin was collected from NMA. The missing data were completed using
Multivariate Imputation by Chained Equations (MICE) algorithm (Buuren et al., 2015), which is available on R statistical software (R
Development Core Team, 2015). The MICE algorithm calculates missing values at a single station using the complete observed values
of all stations under study as predictors. The MICE creates multiple predictions for each missing value and considers uncertainty in
the calculations and provides standard errors (Buuren et al., 2015). As such, the MICE algorithm is better than other methods such as
inverse distance weighting (IDW) and multiple linear regression (MLR) in completing missing data (Turrado et al., 2014).

The quality of observed data of all stations was examined using RClimDex 1.1 (Zhang and Yang, 2004). Errors such as minimum
temperature greater than maximum temperature, and negative rainfall values were corrected using the nearby stations. Outlier values
(i.e. data which are outside mean ± four times the standard deviation) were changed into average values of days before and after the
outliers’ day (WMO, 2009). The observed data after the quality control was used for this study.

2.2.2. RCMs data
Historical RCM simulation outputs (1981–2005) driven by four CMIP5 GCMs were used in this study. The GCMs which were used

as initial boundary conditions were CNRM-CM5, EC-EARTH, HadGEM2-ES and MPI-ESM-LR (Table 1). The historical simulations of
these GCMs were initialized with the atmosphere, ocean, land and sea surface temperature (SST) conditions and forced by observed
natural and anthropogenic CO2 and aerosol concentrations (Taylor et al., 2012). The RCMs used to regionalize these GCMs were the
COnsortium for Small-scale MOdeling (COSMO) Climate Limited-Area Model (CCLM) version 4.8, Rossby Centre Regional Climate
Model (RCA4) and Max Planck Institute Regional Model (REMO) (Table 2). These RCMs were selected for evaluation since they
(especially CCLM and RCA models) were used to downscale historical and future simulations of multiple CMIP5 GCMs (e.g. CNRM-
CM5, EC-EARTH, HadGEM2-ES, and MPI-ESM-LR) in the CORDEX project. The outputs of CCLM4 and RCA4 RCMs driven by these
four GCMs were frequently evaluated and showed reasonable performance over Africa (Nikulin et al., 2012; Dosio et al., 2015; Kim
et al., 2014). Both rainfall and SST data of models were obtained from the publicly available Earth System Grid Federation (ESGF)

Fig. 1. Grids of Regional Climate Models and distribution of meteorological stations over Jemma sub-basin.

Table 1
Global Climate Models (drivers) considered in this study.

GCM Institute Country

CNRM-CM5 CNRM–CERFACS: Centre National de Recherches Météorologiques France
EC-EARTH ICHEC: Consortium of European research institutions and researchers Europe
HadGEM2-ES MOHC: Met Office Hadley Centre United Kingdom
MPI-ESM-LR MPI-M: Max-Planck-Institute Germany
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web portals.
RCMs’ rainfall values which were obtained from grids fully or partially cover the Jemma sub-basin (Fig. 1). For each model,

‘historical’ simulations and only the first ensemble member (r1) was used, except the EC-EARTH model from which the 12th en-
semble member (r12) was used. The outputs of these simulations were obtained at a resolution of ∼50 km by 50 km from the Africa
domain CORDEX dataset. Overall, this study used 10 RCM outputs which were downscaled from four GCMs using three RCMs (only
EC-EARTH and MPI-ESM-LR downscaled through REMO are considered). The ensemble mean of these 10 RCMs was also used for the
evaluation.

The observed rainfall data (point data) which is collected from meteorological stations was converted into spatial data. This is to
match with RCMs gridded data. Thiessen Polygon method (Theissen, 1911) was used to split the sub-basin into smaller polygons
based on area of influence of location of observation stations and to calculate areal rainfall. The Thiessen Polygon method calculates
areal rainfall (sub-basin wide rainfall) to each Thiessen Polygon based on the area of the polygon in proportion to the total area of the
sub-basin. Similarly, Thiessen Polygon method was used to estimate rainfall of each RCM in the entire sub-basin based on the area of
the RCMs’ grids fully or partially covering the Jemma sub-basin (Fig. 1). After the observed and RCMs data were converted into area-
average (spatial) rainfall, different metrics were used to evaluate RCMs performance in simulating the rainfall of the Jemma sub-
basin.

2.2.3. Methods
Three criteria were used to measure performance of climate models in simulating rainfall of the study area. The first criterion

assesses the ability of the RCMs to reproduce the rainfall climatology and characteristic of rainfall events. This criterion compared the
magnitude of mean annual and seasonal rainfall, mean monthly rainfall pattern, distribution and frequency of rainfall events and
return period of RCMs outputs to that of the observed data.

The second evaluation uses statistical metrics, including BIAS, Root Mean Squared Error (RMSE) and Correlation Coefficient
(Correl) between areal averaged rainfall of RCMs and observation.
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Where, RRCM is a rainfall of RCMs, RObserv is a rainfall of stations, the bar over the variables denotes the average over a period of
1981–2005, and N represents the analysis period (25 years).

The correlation is often used to evaluate the linear relationship between areal averaged RCM rainfall and observed rainfall. Values
close to 1.0 indicate a better linear relationship between the variables and a value away from 1.0 indicates less agreement. BIAS is
used to measure the volumetric difference between the RCM rainfall and observed rainfall. A BIAS value close to 0 indicates a minor
systematic difference between RCM rainfall and observed rainfall amounts, whereas a BIAS value far from 0 suggests a deviation.
RMSE measures the difference between RCM rainfall and observed rainfall. An RMSE value close to zero indicates better perfor-
mance.

The third criterion evaluates the teleconnection between Sea Surface Temperature (SST) of CMIP5 GCMs in the Pacific and Indian
Oceans and rainfall simulated by RCMs over the Jemma sub-basin. Since RCMs cover only a particular domain, we are not able to get
SST data simulated by RCMs over different oceanic regions. As a result, SST of parent GCM and rainfall of RCMs is used to compute
SST-rainfall teleconnection. SST of the equatorial Pacific and Indian Oceans are drivers of rainfall of the central highlands of Ethiopia
and the study region (Gissila et al., 2004; Diro et al., 2011; Rowell, 2013). NINO3.4 index is considered to analyze GCMs simulation
of SST anomaly over the Pacific Ocean. NINO3.4 index is the average SST over the region 5 °S–5 °N, 170 °E–120 °W (Rowell, 2013;
Endris et al., 2016). While, Indian Ocean Dipole (IOD) is considered to analyze GCMs simulation of SST anomaly over the Indian
ocean. Indian Ocean Dipole (IOD) is the difference in the average SST of West Indian Ocean (IODW) over the region 10 °S–10 °N,
50 °E–70 °E) and East Indian Ocean (IODE) over the region 10 °S–0 °N, 90 °E–110 °E (Saji et al., 1999; Gissila et al., 2004; Rowell,

Table 2
Description of Regional Climate Models considered in this study.

RCM Full Name Institute Reference

CCLM CLMcom COSMO-CLM
(CCLM) version 4.8

Climate Limited-Area Modelling (CLM) Community (www. clm-community.eu) Baldauf et al. (2011)

RCA4 SMHI Rossby Center Regional
Atmospheric Model (RCA4)

Sveriges Meteorologiska och Hydrologiska Institut (SMHI), Sweden Samuelsson et al. (2011)

REMO MPI regional model (REMO) Max Planck Institute (MPI),
Germany

Jacob et al. (2007)
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2013; Endris et al., 2016).

3. Results and discussion

3.1. Rainfall climatology

Annual, seasonal, and monthly rainfall amount and distribution of rainfall events simulated by different RCMs for the period
1981–2005 showed a clear difference between the models. Fig. 2 shows long term (1981–2005) average annual rainfall of different
RCMs and observation stations. REMO model outputs were better in representing observed annual rainfall compared to other models.
REMO model outputs were higher than observed rainfall in the middle and lower regions of the sub-basin. GCMs data downscaled
using RCA4 model showed a weak performance in capturing annual rainfall of the Jemma sub-basin. Outputs from RCA4 model were
characterized by underestimation in the lower altitudes and overestimation in the higher altitudes. GCMs downscaled using CCLM4
model also showed overestimation in the higher altitudes of the Jemma sub-basin (Fig. 3). Similar to this study, Endris et al. (2013)
and Zaroug et al. (2014) showed that CCLM4, RCA4 and RegCM3 model outputs overestimate rainfall over the Ethiopian highlands

Fig. 2. Long-term (1981–2005) mean annual rainfall from the observations and regional climate models.
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Fig. 3. Long-term (1981–2005) mean monthly rainfall from the observations and regional climate models at different stations and in the entire
Jemma sub-basin. The rainfall of the entire jemma sub-basin is areal rainfall of observation and Regional Climate Models.
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than other regions of East Africa. Kim et al. (2014) found that CCLM4, RCA4 and REMO models driven by ERA-Interim reanalysis
overestimate rainfall in the highlands of Ethiopia. Haile and Rientjes (2015) also reported positive bias of RCMs in the high altitude
areas of the Upper Blue Nile Basin.

Most of the models captured monthly pattern of rainfall of individual stations and areal-averaged rainfall (Fig. 3). High amount of
rainfall is simulated in JJAS season, where notable inter-model differences in simulating magnitude of monthly rainfall were ob-
served. REMO models were superior in capturing the monthly pattern of observed rainfall, while models outputs downscaled by
RCA4 RCM showed the poorest performance in capturing monthly rainfall distribution. GCMs downscaled by RCA4 overestimated
JJAS season rainfall at stations of higher altitude (e.g. Debrebirhan and Mehalmeda stations) and underestimated at stations of lower
altitude (e.g. Alemketema). Herna′ndez-Diaz et al. (2013) also showed overestimation of JJAS season rainfall over the Ethiopian
Highlands for the period 1984–2008 using CRCM5 (Canadian Regional Climate Model) driven by ERA reanalysis. Area-averaged
observed and RCMs′ rainfall values showed lower deviation in the pattern of monthly rainfall (Fig. 3). CCLM4, RCA4 and REMO
driven by ERA-Interim reanalysis were among the models which realistically simulate JJAS season rainfall of the Ethiopian highlands
(Endris et al., 2013).

3.2. Characteristics of rainfall events in regional climate models

The evaluation of RCMs in capturing distribution of extreme rainfall events is important since these extremes are responsible for
flood and drought occurrences. There are a large number of dry days (0 mm/day) in the observed rainfall and RCMs rainfall. In both
of the rainfall data, dry day events were observed mainly during winter and MAM seasons. More number of drizzle rainfall events (i.e.
amount of rainfall< 0.1–0.9mm/day) were simulated in all RCMs (except RCA4 (HadGEM2-ES) compared to observed rainfall. The
drizzle rainfall events in RCM simulations were observed during winter and MAM seasons. Frequency of dry days is low in RCMs
ensemble mean than individual RCMs, because the mean of drizzle rainfall in individual RCMs resulted non-zero values in the
ensemble mean. Comparable frequency of rainfall events (1 mm–6mm/day) was observed between observed and RCMs’ ensemble
mean (Fig. 4).

Similar to the observed rainfall frequency distribution (Fig. 4), there were more number of days with rainfall amount in the range
of 0.5–10mm/day in CCLM4 model family (CCLM4 (CNRM-CM5), CCLM4 (HadGEM2-ES), CCLM4 (EC-EARTH) and CCLM4 (MPI-
ESM-LR) and REMO model family (REMO (EC-EARTH) and REMO (MPI-ESM-LR)). Dosio et al. (2015) evaluated outputs of four
GCMs (MPI-ESM-LR, HadGEM2-ES, CNRM-CM5 and EC-EARTH) downscaled through CCLM4 and showed that these models were
able to reproduce the distribution of rainfall and some extreme rainfall events over the entire Africa. RCMs simulations (especially
RCA4 model family) had a higher number of heavy and very heavy rainfall events (10mm–20mm/day respectively (WMO, 2009))
than observed rainfall. Consistent with this study, using GCMs downscaled by RCA4, Haile and Rientjes (2015) reported high fre-
quency of heavy rainfall events (10mm/day) in the Upper Blue Nile Basin of Ethiopia.

Cumulative distribution of rainfall of RCMs showed clear inter-model difference in simulation of heavy rainfall events. The
CCLM4 model family better reproduced the distribution of observed rainfall compared to other models (Fig. 5). The proportion of
heavy rainfall (rainfall more than 10mm/day) and very heavy rainfall (rainfall more than 20mm/day) was about 40% and 10%,
respectively in most RCA4 models. In contrast, the proportion of 10mm/day rainfall was only about 10% in most of CCLM4 and
REMO models as well as in the observed rainfall. In all models except RCA4 (EC-EARTH), the proportion of drizzle and light rainfall
events (0.20–5mm/day) account about 50% of the total rainfall (Fig. 5).

Similar to the cumulative distribution of rainfall events, all models overestimated the return period, especially RCA4 model family
showed higher overestimation of the return period. REMO model family captured annual and JJAS return period of observed rainfall
better than other models. In most RCA4 models, a return period of 25 years was estimated for 2500mm/year rainfall, which is 150%
higher than observed rainfall (Fig. 6). The annual and JJAS rainfall return period analysis (Fig. 6a and b) indicated that a large
proportion of the annual rainfall (about 80%) was concentrated in the JJAS season. In few high altitude stations, RCA4 models

Fig. 4. Histogram of RCMs and Observational Daily Rainfall (1981–2005). The values of both observed and RCMs are areal rainfall.
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provide more than 600mm/month rainfall during JJAS season (Fig. 3). However, the observed monthly rainfall was less than
300mm/month during the JJAS season. Moreover, there was more number of very heavy rainfall events (20mm/day) in the RCA4
model family than other models (Fig. 5). The results from the RCA4 model family suggests there could be frequent flooding and soil
erosion problems which may affect social and ecological systems.

3.3. Statistical evaluation of Regional Climate Models

Statistical metrics (Correlation, BIAS and RMSE) between the areal averaged observed and RCMs rainfall confirmed the difference

Fig. 5. Cumulative Distribution of RCMs and Observed Daily Rainfall. The values of both observed and RCMs are areal rainfall.

Fig. 6. Observed and RCMs annual (a) and summer (b) rainfall return periods. The values of both observed and RCMs are areal rainfall.
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in the performance of RCMs in capturing annual and JJAS rainfall of the Jemma sub-basin. All RCM models overestimated the annual
and JJAS rainfall, but with different magnitude. For instance, wet BIAS in annual rainfall ranged from 9.6% in CCLM4 (HadGEM2-ES)
model to 110.9% in RCA4 (EC-EARTH) model. Wet BIAS in JJAS rainfall ranged from 0.76% in REMO (MPI-ESM-LR) model to
100.7% in RCA4 (HadGEM2-ES) model. GCMs downscaled using RCA4 RCM showed better correlation than other RCMs, but higher
wet BIAS and higher RMSE compared to other models (Table 3). GCMs downscaled using CCLM4 RCM were poorly correlated with
the observed rainfall, but BIAS and RMSE in these RCMs were better than RCA4 model family. The outputs of GCMs downscaled using
REMO RCM showed better performance in BIAS, RMSE and Correlation compared to RCA4 and CCLM4 model families and the
ensemble mean. REMO (MPI-ESM-LR), REMO (MPI-ESM-LR), CCLM4 (HadGEM2-ES) and CCLM4 (MPI-ESM-LR) showed better
performance in BIAS, RMSE, and correlation metrics compared to other RCMs.

The ensemble mean of RCMs was superior in correlation metric which shows higher correlation with observed annual and JJAS
rainfall than other individual RCM (Table 3). The ensemble mean was also characterized by low coefficient of variation (CV) in
relation to the observed rainfall. In CCLM4 and REMO model family, the BIAS and RMSE of JJAS rainfall was better than annual
rainfall. While in RCA4 models, poor performance in BIAS and RMSE was observed in the JJAS due to overestimation of JJAS rainfall
(Table 3).

3.4. Associations between Sea surface temperature and rainfall of Regional Climate Models

It is investigated that increase in SST in Indian ocean and Equatorial Pacific regions triggers export of dry air from these oceanic
regions toward the central highlands of Ethiopia and the Blue Nile River Basin, which further result a decrease in rainfall (Williams
et al., 2012; Abtew et al., 2009; Taye and Willems, 2012; Endris et al., 2016). The observed rainfall of the Jemma sub-basin also
showed an association with NINO 3.4 index (Table 4). Concurrently, this study showed the teleconnection between SST of CMIP5
GCMs and rainfall of RCMs over the Jemma sub-basin, although not statistically significant. Annual (90%) and JJAS (80%) rainfall of
RCMs have negative correlations with GCMs’ SST of Pacific Ocean (NINO3.4). The annual (60%) and JJAS (70%) rainfall RCMs also
showed negative but weak association with GCMs’ SST of Indian ocean (IOD) (Table 4). Simulation of SST (NINO3.4) from some
CMIP5 GCMs (HadGEM2-ES and EC-EARTH) showed better correlation with the rainfall of RCMs.

Table 3
Correlation, BIAS and RMSE between Observed and RCMs annual and summer rainfall in Jemma sub-basin over 1981–2005.

Average Rainfall (mm) CV (%) Correlation
(r)

Bias (%) RMSE
(mm)

Annual JJAS Annual JJAS Annual JJAS Annual JJAS Annual JJAS

Observed 1001 815 10.76 16.31 – – – – – –
CCLM4(CNRM-CM5) 1631 903 15.95 12.81 0.12 −0.06 62.90 10.8 692 213
CCLM4(EC-EARTH) 1664 977 18.80 16.54 0.19 0.00 66.20 19.9 751 268
CCLM4(HaDGEM2-ES) 1097. 860 13.54 16.22 0.23 0.04 9.60 5.50 225 191
CCLM4(MPI-ESM-LR) 1177 854 19.25 15.61 0.23 0.04 17.62 4.80 313 215
RCA4(CNRM-CM5) 1357 838 17.85 11.40 0.29 0.28 35.50 2.81 462 170
RCA4(EC-EARTH) 2108 1477 13.07 14.77 0.36 0.19 110.9 81.33 1149 730
RCA4(HaDGM2-ES) 1912 1690 15.92 15.96 0.48 0.30 91.00 100.07 969 936
RCA4(MPI-ESM-LR) 1912 1604 16.72 12.76 0.44 0.31 91.00 96.96 970 830
REMO(EC-EARTH) 1248 847 8.11 11.03 0.34 0.17 24.7 3.98 284 187
REMO(MPI-ESM-LR) 1113 821 12.51 12.74 0.37 0.20 11.1 0.76 204 173
Ensemble 1522 1087 6.15 5.50 0.60 0.50 52.0 33.44 545 315

Table 4
Correlation between SST indices and annual and seasonal RCMs rainfall of Jemma sub-basin.

NINO3.4 IOD

Annual JJAS Annual JJAS

Observed −0.48 −0.37 – –
CCLM4(CNRM-CM5) −0.31 −0.10 −0.00 −0.23
CCLM4(EC-EARTH) −0.20 −0.03 −0.25 −0.13
CCLM4(MPI-ESM-LR) −0.15 −0.17 0.15 0.25
CCLM4(HaDGEM2-ES) −0.37 −0.25 0.14 0.10
CCLM4(HaDGEM2-ES) −0.37 −0.25 0.14 0.10
RCA4(CNRM-CM5) −0.03 0.03 −0.03 −0.09
RCA4(EC-EARTH) −0.32 −0.43 −0.04 −0.11
RCA4(HaDGEM2-ES) 0.39 0.54 −0.25 −0.23
RCA4(MPI-ESM-LR) −0.14 −0.15 −0.30 0.14
REMO(EC-EARTH) −0.31 −0.21 0.30 −0.17
REMO(MPI-ESM-LR) −0.12 −0.23 0.05 0.24
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Other studies evaluated the performance of CMIP5 GCMs in simulating the teleconnections between the rainfall and SST in the
Blue Nile River Basin, Ethiopian highlands and different regions of Africa. RCMs (CCLM4, RCA4 and REMO) driven by Re-Analysis
(ERA-Interim) reasonably simulated the teleconnection between the rainfall and ENSO indices in the Ethiopian highlands (Endris
et al., 2013). Zaroug et al., 2014 studied that RegCM4 model driven by reanalysis data showed modest performance in simulating
ENSO related rainfall variability in the Upper Blue Nile Basin. In contrast, Bhattacharjee and Zaitchi (2015) were not able to represent
any teleconnection between observational based ENSO indices and CMIP5 GCMs rainfall in the Upper Blue Nile Basin. Over Africa,
CMIP5 GCMs (MPI-ESM-LR, CNRM-CM5 and HadGEM2-ES) showed overestimation of SST in Guinea Gulf and the West coast of sub-
equatorial Africa (Brands et al., 2013). The inability to represent SST by GCMs could be attributed to the fact that CMIP5 GCMs are
sensitive to initial conditions, a quasi-equilibrium control run (Taylor et al., 2012). The historical run of CMIP5 GCMs is initiated
from an arbitrary point rather than using observed SST data which is the case for Atmospheric models (AMIP). As a result, it is not
expected that models simulations to occur at the same time as the observational record.

4. Conclusion

This study showed that the impact of RCMs was stronger than the initial boundary conditions (GCMs) in characterizing the
rainfall climatology of the Jemma sub-basin. The outputs of GCMs were downscaled using RCMs, and it was found that GCMs
downscaled using REMO and CCLM4 RCMs perform better in representing the annual and monthly rainfall climatology and dis-
tribution of rainfall events. When it comes to the areal-average rainfall across the entire sub-basin, all RCMs have shown a positive
bias in annual and JJAS rainfall, but with different magnitude. The RCA4 models showed the poorest performance in most of the
criteria studied. They showed higher overestimation of annual and JJAS rainfall in the higher altitudes of the sub-basin and higher
underestimation in the lower elevation areas of the sub-basin. Higher BIAS, RMSE and extreme rainfall events were also estimated in
the RCA4 model family. In terms of capturing the teleconnections with SST, most RCMs rainfall showed negative association, but
weak with SST of parent GCMs over the equatorial Pacific and Indian Ocean. This is similar to other studies (Abtew et al., 2009; Taye
and Willems, 2012; Williams et al., 2012) that found the negative teleconnection between SST and rainfall of the Blue Nile Basin and
Ethiopian Highlands.

Flato et al. (2013) and Kim et al. (2014) found that ensemble mean model outputs represent observed rainfall better than any of
the individual RCMs. Likewise, this study showed that mean ensemble output was better in capturing monthly pattern of rainfall than
any of the individual RCMs (S-RCM) (Teutschbein and Seibert, 2010). Moreover, the ensemble mean rainfall output showed better
correlation with observed annual and JJAS season rainfall. It also showed low variability of rainfall compared to the S-RCM.
However, higher overestimation of rainfall, particularly by RCA4 models triggers ensemble mean of RCMs to show weak performance
in RMSE and BIAS metrics and in reproducing distribution of rainfall events. Due to the presence of drizzle rainfall events in
individual RCMs, there are lower numbers of dry days (0 mm/day) in the ensemble mean of RCMs compared to individual (S-RCM)
rainfall events distribution.

In assessment of future climate change impact and adaptation decisions, it is pertinent to identify climate model outputs which
can reproduce the climate of the region under study. It is assumed climate modeling schemes which perform well for the current
climate are more likely to perform well for future climate conditions (Teutschbein and Seibert, 2012). In our study, the difference in
RCMs’ ability in simulating current rainfall climatology of the Jemma sub-basin is investigated. The magnitude of biases and dis-
tribution of rainfall events was relatively better in REMO and CCLM4 models simulations. The existing biases and differences in
capturing distribution of rainfall events in REMO and CCLM4 models can be improved by using statistical bias correction methods
and could be satisfactorily used for climate change adaptation decision support systems.
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